Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 407(2): 917-24, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18952256

ABSTRACT

It is well established that the dissolved gaseous mercury (DGM) production in waters is mainly driven by photochemical processes. The present paper provides evidence for a significant bacteria-mediated DGM production, occurring also under dark conditions in environmentally different types of coastal water bodies of the Mediterranean basin. The DGM production was laboratory determined in sea, lagoon-brackish and lake water samples, comparing the efficiency of the DGM production processes in darkness and in the light. This latter condition was established by exposing samples at solar radiation intensity in the Photosyntetical Active Radiation region (PAR) of 200 W m(-2). Mercury reduction rate in the dark was of the order of 2-4% of the DGM production in lightness, depending on the total mercury concentration in the water, rather than the bacterial abundance in it. Support for the active bacterial role in mercury reduction rate under dark conditions was provided by: 1) absence of significant DGM production in sterilized water samples (following filtration treatment or autoclaving), 2) restored DGM production efficiency, following re-inoculation into the same water samples of representatives of their bacterial community, previously isolated and separately cultured. Notwithstanding the low bacteria-mediated vs. the high photo-induced DGM production, whatever natural water body was considered, it is worth stressing the significant contribution of this organismal-mediated process to oceanic mercury evasion, since it occurs continuously along the entire water column throughout the 24 h of the day.


Subject(s)
Bacteria/metabolism , Darkness , Environmental Monitoring , Gases/metabolism , Mercury/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Bacteria/drug effects , Bacteria/growth & development , Bacteria/radiation effects , Mediterranean Sea , Mercury/radiation effects , Mercury/toxicity , Solubility , Time Factors , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity
2.
Sci Total Environ ; 318(1-3): 211-21, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14654286

ABSTRACT

Laboratory experiments on DGM production under light/dark cycles in a culture of the marine diatom Chaetoceros sp. spiked with 200 ng l(-1) of mercury have been performed. DGM formation has been investigated also in the cell exudates, obtained by filtration of the cell culture. Results show that the cell culture and the filtrate give the same value of DGM production (2.24+/-0.88 pg min(-1) l(-1) and 2.23+/-0.02 pg min(-1) l(-1), respectively) in the light (40 W m(-2)), values much higher than to those obtained in the medium culture alone. A significant DGM production has been measured in dark conditions both in the cell culture (0.48+/-0.11 pg min(-1) l(-1)) and in the filtrate (0.85+/-0.10 pg min(-1) l(-1)). The results highlight that the organic compounds released by the cell in the culture medium play a fundamental role in the DGM photo-formation processes.


Subject(s)
Diatoms/chemistry , Mercury/chemistry , Cell Culture Techniques , Culture Media , Gases , Mercury/analysis , Photochemistry , Solubility , Volatilization , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL